Off-campus UNL users: To download campus access dissertations, please use the following link to log into our proxy server with your NU ID and password. When you are done browsing please remember to return to this page and log out.

Non-UNL users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Oscillation theory of dynamic equations on time scales

Raegan J Higgins, University of Nebraska - Lincoln


In past years mathematical models of natural occurrences were either entirely continuous or discrete. These models worked well for continuous behavior such as population growth and biological phenomena, and for discrete behavior such as applications of Newton's method and discretization of partial differential equations. However, these models are deficient when the behavior is sometimes continuous and sometimes discrete. The existence of both continuous and discrete behavior created the need for a different type of model. This is the concept behind dynamic equations on time scales. For example, dynamic equations can model insect populations that are continuous while in season, die out in, say, winter, while their eggs are incubating or dormant, and then hatch in a new season, giving rise to a nonoverlapping population. ^ Throughout this work, we will be concerned with certain dynamic equations on time scales. We start with a brief introduction to the time scale calculus and some theory necessary for the new results. The main concern will then be the oscillatory behavior of solutions to certain second order dynamic equations. In Chapter 3, an equation of particular interest is one containing both advanced and delayed arguments. We will use the method of Riccati substitution to prove some oscillation results of the solutions. ^ In Chapter 4 we again study the oscillatory behavior of a second dynamic equation. However, in this chapter, the equation only has delayed arguments. In addition to using Riccati substitution, we use the method of upper and lower solutions to develop necessary and sufficient conditions for oscillatory solutions. In the final chapter we are interested in the existence of nonoscillatory solutions of dynamic equations on time scales. The common theme among these results is the use of the Riccati substitution technique and the integration of dynamic inequalities. ^

Subject Area


Recommended Citation

Higgins, Raegan J, "Oscillation theory of dynamic equations on time scales" (2008). ETD collection for University of Nebraska - Lincoln. AAI3297856.