Off-campus UNL users: To download campus access dissertations, please use the following link to log into our proxy server with your NU ID and password. When you are done browsing please remember to return to this page and log out.

Non-UNL users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Contributions to computational complexity and machine learning: Unambiguity in log -space computations and reoptimizing multi-class classifiers

Christopher M Bourke, University of Nebraska - Lincoln

Abstract

Part I. We make progress in understanding the complexity of the graph reachability problem in the context of unambiguous logarithmic space computation; a restricted form of nondeterminism. As our main result, we show a new upper bound on the directed planar reachability problem by showing that it can be decided in the class unambiguous logarithmic space (UL). We explore the possibility of showing the same upper bound for the general graph reachability problem. We give a simple reduction showing that the reachability problem for directed graphs with thickness two is complete for the class nondeterministic logarithmic space (NL). Hence an extension of our results to directed graphs with thickness two will unconditionally collapse NL to UL. We also extend our main result to several classes of non-planar graphs and other graph problems. ^ Part II. Significant changes in the instance distribution or associated cost function of a learning problem require one to reoptimize a previously-learned classifier to work under new conditions. We study the problem of reoptimizing a multi-class classifier based on its ROC hypersurface and a matrix describing the costs of each type of prediction error. For a binary classifier, it is straightforward to find an optimal operating point based on its ROC curve and the relative cost of true positive to false positive error. However, the corresponding multi-class problem (finding an optimal operating point based on a ROC hypersurface and cost matrix) is more challenging and until now, it was unknown whether an efficient algorithm existed that found an optimal solution. We answer this question by first proving that the decision version of this problem is NP-complete. As a complementary positive result, we give an algorithm that finds an optimal solution in polynomial time if the number of classes n is a constant. We also present several heuristics for this problem, including linear, nonlinear, and quadratic programming formulations, genetic algorithms, and a customized algorithm. Empirical results suggest that under both uniform and non-uniform cost models, simple greedy methods outperform more sophisticated methods. ^

Subject Area

Computer Science

Recommended Citation

Bourke, Christopher M, "Contributions to computational complexity and machine learning: Unambiguity in log -space computations and reoptimizing multi-class classifiers" (2008). ETD collection for University of Nebraska - Lincoln. AAI3336828.
http://digitalcommons.unl.edu/dissertations/AAI3336828

Share

COinS