Off-campus UNL users: To download campus access dissertations, please use the following link to log into our proxy server with your NU ID and password. When you are done browsing please remember to return to this page and log out.

Non-UNL users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Two dimensional electron gas at oxide interfaces

Karolina Janicka, University of Nebraska - Lincoln

Abstract

Extraordinary phenomena can occur at the interface between two oxide materials. A spectacular example is a formation of a two-dimensional electron gas (2DEG) at the SrTiO3/LaAlO3 interface. In this dissertation the properties of the 2DEG are investigated from first principles. The spatial extent of the 2DEG formed at the SrTiO3/LaAlO 3 n-type interface is studied. It is shown that the confinement of the 2DEG is controlled by metal induced gap states formed in the band gap of SrTiO 3. The confinement width is then determined by the attenuation length of the metal induced gap states into SrTiO3 which is governed by the lowest decay rate evanescent states of bulk SrTiO3 which in turn can be found from the complex band structure of bulk SrTiO3. Magnetic properties of the 2DEG formed at the n-type interface of the SrTiO3/LaAlO3 superlattices are investigated. It is found that for a thin SrTiO3 film the interface is ferromagnetic but for a thicker SrTiO3 film the magnetic moment decreases and eventually disappears. This is a result of delocalization of the 2DEG that spreads over thicker SrTiO3 film which leads to violation of the Stoner criterion. Further, it is shown that inclusion of the Hubbard U interaction enhances the Stoner parameter and stabilizes the magnetism. The effect of the 2DEG and the polar interfaces for the thin film ferroelectricity is investigated using both first principles and model calculations. Using a TiO2-terminated BaTiO3 film with LaO monolayers at the two interfaces it is shown that the intrinsic electric field produced by the polar interface forces ionic displacements in BaTiO3 to produce the electric polarization directed into the interior of the BaTiO 3 layer. This creates a ferroelectric dead layer near the interfaces that is non-switchable and thus detrimental to ferroelectricity. It is found that the effect is stronger for a larger effective ionic charge at the interface and longer screening length due to a stronger intrinsic electric field that penetrates deeper into the ferroelectric.

Subject Area

Physical chemistry|Electromagnetics

Recommended Citation

Janicka, Karolina, "Two dimensional electron gas at oxide interfaces" (2011). ETD collection for University of Nebraska-Lincoln. AAI3487262.
https://digitalcommons.unl.edu/dissertations/AAI3487262

Share

COinS