Off-campus UNL users: To download campus access dissertations, please use the following link to log into our proxy server with your NU ID and password. When you are done browsing please remember to return to this page and log out.

Non-UNL users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Laser-induced multi-energy processing in diamond growth

Zhiqiang Xie, University of Nebraska - Lincoln


Laser-induced multi-energy processing (MEP) introduces resonant vibrational excitations of precursor molecules to conventional chemical vapor deposition methods for material synthesis. In this study, efforts were extended to explore the capability of resonant vibrational excitations for promotion of energy efficiency in chemical reactions, for enhancement of diamond deposition, and for control of chemical reactions. The research project mainly focused on resonant vibrational excitations of precursor molecules using lasers in combustion flame deposition of diamond, which led to: 1) promotion of chemical reactions; 2) enhancement of diamond growth with higher growth rate and better crystallizations; 3) steering of chemical reactions which lead to preferential growth of {100}-oriented diamond films and crystals; and 4) mode-selective excitations of precursor molecules toward bond-selective control of chemical reactions. ^ Diamond films and crystals were deposited in open air by combustion flame deposition through resonant vibrational excitations of precursor molecules, including ethylene (C2H4) and propylene (C3H 6). A kilowatt wavelength-tunable CO2 laser with spectral range from 9.2 to 10.9 µm was tuned to match vibrational modes of the precursor molecules. Resonant vibrational excitations of these molecules were achieved with high energy efficiency as compared with excitations using a common CO2 laser (fixed wavelength at 10.591µm). With resonant vibrational excitations, the diamond growth rate was increased; diamond quality was promoted; diamond crystals with lengths up to 5 mm were deposited in open air; preferential growth of {100}-oriented diamond films and single crystals was achieved; mode-selective excitations of precursor molecules were investigated toward control of chemical reactions. ^ Optical emission spectroscopy (OES), mass spectrometry (MS), and molecular dynamic simulations were conducted to obtain an in-depth understanding of the resonant vibrational excitations. Species concentrations in flames without and with laser excitations under different wavelengths were investigated both experimentally and theoretically. Detection of C2, CH, and OH radicals, as well as CxHy species and their oxides (CxH yO) (x=1, 2; y=0∼5) using OES and MS, together with reaction pathway simulations, were used to explain the effect of vibrational excitations of precursor molecules on chemical reactions and on diamond depositions.^

Subject Area

Engineering, Chemical|Engineering, Electronics and Electrical|Energy

Recommended Citation

Xie, Zhiqiang, "Laser-induced multi-energy processing in diamond growth" (2012). ETD collection for University of Nebraska - Lincoln. AAI3503166.