Off-campus UNL users: To download campus access dissertations, please use the following link to log into our proxy server with your NU ID and password. When you are done browsing please remember to return to this page and log out.

Non-UNL users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

On a combined adaptive tetrahedral tracing and edge diffraction model

Carl R Hart, University of Nebraska - Lincoln

Abstract

A major challenge in architectural acoustics is the unification of diffraction models and geometric acoustics. For example, geometric acoustics is insufficient to quantify the scattering characteristics of acoustic diffusors. Typically the time-independent boundary element method (BEM) is the method of choice. In contrast, time-domain computations are of interest for characterizing both the spatial and temporal scattering characteristics of acoustic diffusors. Hence, a method is sought that predicts acoustic scattering in the time-domain. ^ A prediction method, which combines an advanced image source method and an edge diffraction model, is investigated for the prediction of time-domain scattering. Adaptive tetrahedral tracing is an advanced image source method that generates image sources through an adaptive process. Propagating tetrahedral beams adapt to ensonified geometry mapping the geometric sound field in space and along boundaries. The edge diffraction model interfaces with the adaptive tetrahedral tracing process by the transfer of edge geometry and visibility information. Scattering is quantified as the contribution of secondary sources along a single or multiple interacting edges. Accounting for a finite number of diffraction permutations approximates the scattered sound field. Superposition of the geometric and scattered sound fields results in a synthesized impulse response between a source and a receiver. ^ Evaluation of the prediction technique involves numerical verification and numerical validation. Numerical verification is based upon a comparison with analytic and numerical (BEM) solutions for scattering geometries. Good agreement is shown for the selected scattering geometries. Numerical validation is based upon experimentally determined scattered impulse responses of acoustic diffusors. Experimental data suggests that the predictive model is appropriate for high-frequency predictions. For the experimental determination of the scattered impulse response the merits of a maximum length sequence (MLS) versus a logarithmic swept-sine (LSS) are compared and contrasted. It is shown that a LSS is an appropriate stimuli for testing acoustic diffusors by comparing against scattered relative levels measured by a MLS signal.^

Subject Area

Engineering, Architectural|Physics, Acoustics

Recommended Citation

Hart, Carl R, "On a combined adaptive tetrahedral tracing and edge diffraction model" (2014). ETD collection for University of Nebraska - Lincoln. AAI3618668.
http://digitalcommons.unl.edu/dissertations/AAI3618668

Share

COinS