Off-campus UNL users: To download campus access dissertations, please use the following link to log into our proxy server with your NU ID and password. When you are done browsing please remember to return to this page and log out.

Non-UNL users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Multiphysics modeling to enhance understanding of microwave heating of food in domestic ovens

Jiajia Chen, University of Nebraska - Lincoln

Abstract

Nonuniform heating is the biggest issue in the microwave heating of prepared meals. Multiphysics based models are promising tools to improve microwave heating uniformity by properly designing the food product. However, limited availability of accurate temperature-dependent material properties, inadequate model prediction accuracy, and high computational power and complexity in model development are three gaps that greatly limited the application of these models in the food industry.^ To fill in the gaps, firstly, we developed a multitemperature calibration protocol to measure temperature-dependent dielectric properties (dielectric constant and loss factor). The temperature-dependent dielectric and thermal (thermal conductivity and specific heat capacity) properties of mashed potato and whey protein gel were measured from -20 to 100 °C and were provided as input to the models.^ Secondly, a three-dimensional (3-D) finite element model coupling electromagnetic and heat and mass transfer was developed to fully understand the interactions between the microwaves and fresh and frozen mashed potato. Transient point temperatures, spatial surface temperatures, and total moisture loss predicted by the models matched well with the experimental validation. A sensitivity analysis of the effect of input parameters on the model prediction was evaluated in the fresh mashed potato model and found that the gas diffusion coefficient, intrinsic water permeability, and the evaporation rate constant are sensitive parameters that need to be determined accurately. Frequency of updating dielectric properties were evaluated in the frozen mashed potato model and found that dielectric properties can be updated for every rotational cycle without affecting the accuracy.^ Finally, these models were further simplified to improve their utility in the microwaveable food development. The simplification of decoupling electromagnetic from heat transfer analysis (use a constant heat source term based on dielectric properties at room temperature) did not affect the predicted temperatures considerably, while reducing the computation time by 93%. A simple 1-D analytical model based on planar wave assumption was developed to determine the thicknesses of multicompartment meals based on the dielectric, thermal, and physical properties, so that two compartments could achieve same heating rate.^ These models with different complexity could be used in different stages of microwaveable foods design.^

Subject Area

Food science|Engineering|Agricultural engineering

Recommended Citation

Chen, Jiajia, "Multiphysics modeling to enhance understanding of microwave heating of food in domestic ovens" (2015). ETD collection for University of Nebraska - Lincoln. AAI3714465.
http://digitalcommons.unl.edu/dissertations/AAI3714465

Share

COinS