Electrical & Computer Engineering, Department of

 

Date of this Version

2010

Citation

Foruzan, E., et al. "Experimental investigation of dielectric barrier impact on breakdown voltage enhancement of copper wire-plane electrode systems." XVIII International Conference on Gas Discharge and Their Applications, Greifswald, Germany, 5-9 Sept., 2010. 2010.

Abstract

Non-pressurized air is extensively used as basic insulation media in medium / high voltage equipments. An inherent property of air-insulated designs is that the systems tend to become physically large. Application of Dielectric barrier can increase the breakdown voltage and therefore decrease the size of the equipments.

In this paper, the impact of dielectric barrier on breakdown voltage enhancement of a copper wire-plane system is investigated. For this purpose, the copper wire is covered with different dielectric materials. Depending on the air gap and dielectric strength of the barrier the breakdown can be initiated in the solid or gas dielectric. Theoretically, free charges are affected by the electric field between the electrodes and accumulated at the dielectric surface, this leads to the reduction of electric field in air gap and enhancement of the ifield in the dielectric layer. Therefore, with appropriate selection of the barrier thickness and material, it is possible to increase the breakdown voltage of the insulation system. The influence of different parameters like inter-electrode spacing, and dielectric material on the break-down voltage is investigated for applied 50 Hz AC and DC voltages. The results indicate that up to 240% increase of the breakdown voltage can be achieved.

Share

COinS