Electrical & Computer Engineering, Department of

 

Date of this Version

2014

Citation

IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 50, NO. 2, MARCH/APRIL 2014

Comments

© 2013 IEEE

Abstract

Incorporating a medium-voltage dc (MVDC) integrated power system is a goal for future surface combatants and submarines. In an MVDC shipboard power system, dc/dc converters are commonly employed to supply constant power to electric loads. These constant power loads have a characteristic of negative incremental impedance, which may cause system instability during disturbances if the system is not properly controlled. This paper proposes a sliding-mode duty-ratio controller (SMDC) for dc/dc buck converters with constant power loads. The proposed SMDC is able to stabilize the dc power systems over the entire operating range in the presence of significant variations in the load power and input voltage. The proposed SMDC is validated by both simulation studies inMATLAB/Simulink and experiments for stabilizing a dc/dc buck converter with constant power loads. Simulation studies for an MVDC shipboard power system with constant power loads for different operating conditions with significant variations in the load power and supply voltage are also provided to further demonstrate the effectiveness of the proposed SMDC.

Share

COinS