Electrical & Computer Engineering, Department of

 

Date of this Version

12-26-1996

Citation

1997 Society of Photo-Optical Instrumentation Engineers

Comments

Opt. Eng. 36(5) 1552–1561 (May 1997)

Abstract

A case study, written in a tutorial manner, is presented where a comprehensive computer simulation is developed to determine the driving factors contributing to spacecraft pointing accuracy and stability. Models for major system components are described. Among them are spacecraft bus, attitude controller, reaction wheel assembly, star-tracker unit, inertial reference unit, and gyro drift estimators (Kalman filter). The predicted spacecraft performance is analyzed for a variety of input commands and system disturbances. The primary deterministic inputs are the desired attitude angles and rate set points. The stochastic inputs include random torque disturbances acting on the spacecraft, random gyro bias noise, gyro random walk, and star-tracker noise. These inputs are varied over a wide range to determine their effects on pointing accuracy and stability. The results are presented in the form of trade-off curves designed to facilitate the proper selection of subsystems so that overall spacecraft pointing accuracy and stability requirements are met.

Share

COinS