Entomology, Department of

 

Date of this Version

2004

Citation

Published in Comparative Biochemistry and Physiology Part A 137:2 (2004), pp. 285–295

Comments

Copyright © 2003 Elsevier Inc. Used by permission.

Abstract

Insect cellular immune reactions to bacterial infection include nodule formation. Eicosanoids mediate several cellular actions in the nodulation process, including formation of hemocyte microaggregates, an early step. In previous work, we reported that isolated hemocytes produce and secrete eicosanoids that influence hemocyte behavior in response to bacterial challenge. We also reported that microaggregate formation in response to challenge was mediated by prostaglandins (PGs), but not by products of the lipoxygenase (LOX) pathways. In this paper we describe experiments designed to test the idea that exposing isolated hemocytes to lipopolysaccharide (LPS) evokes formation of hemocyte microaggregates and this cellular action is mediated by PGs. Results show that isolated hemocyte preparations challenged with LPS formed more hemocyte microaggregates than unchallenged preparations (6.9 × 103 microaggregates/ml hemolymph vs. 2.5 × 103 microaggre-gates/ml hemolymph). LPS challenge stimulated formation of hemocyte microaggregates in a dose dependent manner. Experimental groups pretreated with cyclooxygenase inhibitors produced fewer hemocyte microaggregates in response to LPS challenge than untreated control groups. The for-mation of hemocyte microaggregates was not influenced by LOX inhibitors. Furthermore, the influence of dexamethasone was reversed by supplementing the experimental groups with the eicosanoid precursor fatty acid molecule, arachidonic acid and PGH2. Palmitic acid, which is not substrate for eicosanoid biosynthesis, did not reverse the effects of dexamethasone on the formation of microaggregates. The LOX product 5(S)hydroperoxyeicosa-6E,8Z,11Z,14Z-tetraenoic acid also did not reverse the effects of dexamethasone. These results are consistent with similar investigations performed with bacterial suspensions. We infer that isolated hemocyte preparations recognize and react to LPS by forming microaggregates and this reaction is mediated by PGs, but not products of the LOX pathway.

Included in

Entomology Commons

Share

COinS