Earth and Atmospheric Sciences, Department of



P. Zoogman, Harvard-Smithsonian Center for Astrophysics
X. Liu, Harvard-Smithsonian Center for Astrophysics
R. M. Suleiman, Harvard-Smithsonian Center for Astrophysics
W. F. Pennington, NASA Langley Research Center
D. E. Flittner, NASA Langley Research Center
J. A. Al-Saadi, NASA Langley Research Center
B. B. Hinton, NASA Langley Research Center
D. K. Nicks, Ball Aerospace & Technologies Corp
M. J. Newchurch, University of Alabama, Huntsville
J. L. Carr, Carr Astronautics
S. J. Janz, NASA Goddard Space Flight Center
M. R. Andraschko, NASA Langley Research Center
A. Arola, Finnish Meteorological Institute
B. D. Baker, Ball Aerospace & Technologies Corp
B. P. Canova, Ball Aerospace & Technologies Corp
C. Chan Miller, Harvard University
R. C. Cohen, University of California - Berkeley
J. E. Davis, Harvard-Smithsonian Center for Astrophysics
M. E. Dussault, Harvard-Smithsonian Center for Astrophysics
D. P. Edwards, National Center for Atmospheric Research
J. Fishman, Saint Louis University
A. Ghulam, Saint Louis University
G. Gonzalez Abad, Harvard-Smithsonian Center for Astrophysics
M. Grutter, Universidad Nacional Autónoma de México
J. R. Herman, University of Maryland - Baltimore County
J. Houck, Harvard-Smithsonian Center for Astrophysics
D. J. Jacob, Harvard University
J. Joiner, NASA Goddard Space Flight Center
B. J. Kerridge, Rutherford Appleton Laboratory
J. Kim, Yonsei University
N. A. Krotkov, NASA Goddard Space Flight Center
L. Lamsal, University Space Research Association
C. Li, University of Maryland - Baltimore County
A. Lindfors, Finnish Meteorological Institute
R. V. Martin, Dalhousie University
C. T. McElroy, York University
C. McLinden, Environment and Climate Change
V. Natraj, NASA Jet Propulsion Laboratory
D. O. Neil, NASA Langley Research Center
C. R. Nowlan, Harvard-Smithsonian Center for Astrophysics
E. J. O'Sullivan, Harvard-Smithsonian Center for Astrophysics
P. I. Palmer, University of Edinburgh
R. B. Pierce, National Oceanic and Atmospheric Administration
M. R. Pippin, NASA Langley Research Center
A. Saiz-Lopez, Instituto de Química Física Rocasolano
R. J. D. Spurr, RT Solutions, Inc.
J. J. Szykman, Environmental Protection Agency
O. Torres, NASA Goddard Space Flight Center
J. P. Veefkind, Koninklijk Nederlands Meteorologisch Instituut
B. Veihelmann, European Space Agency
H. Wang, Harvard-Smithsonian Center for Astrophysics
J. Wang, University of Nebraska - Lincoln

Date of this Version



Journal of Quantitative Spectroscopy & Radiative Transfer 186 (2017), pp. 17–39,


U.S. government work.


TEMPO was selected in 2012 by NASA as the first Earth Venture Instrument, for launch between 2018 and 2021. It will measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO observes from Mexico City, Cuba, and the Bahamas to the Canadian oil sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution (~2.1kmN/S x 4.4 kmE/W at 36.5°N, 100°W). TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry, as well as contributing to carbon cycle knowledge. Measurements are made hourly from geostationary (GEO) orbit, to capture the high variability present in the diurnal cycle of emissions and chemistry that are unobservable from current low-Earth orbit (LEO) satellites that measure once per day. The small product spatial foot print resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies.

TEMPO takes advantage of a commercial GEO host space craft to provide a modest cost mission that measures the spectra required to retrieve ozone(O3), nitrogen dioxide(NO2), sulfur dioxide(SO2), formaldehyde(H2CO), glyoxal (C2H2O2), bromine monoxide(BrO), IO (iodine monoxide), water vapor, aerosols, cloud parameters, ultraviolet radiation,and foliage properties. TEMPO thus measures the major elements,directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lower most troposphere, substantially reducing uncertainty in air quality predictions. TEMPO quantifies and tracks the evolution of aerosol loading. It provides these near-real- time air quality products that will be made publicly available. TEMPO will launch at a prime time to be the North American component of the global geostationary constellation of pollution monitoring together with the European Sentinel-4 (S4) and Korean Geostationary Environment Monitoring Spectrometer (GEMS) instruments.