U.S. Department of Agriculture: Animal and Plant Health Inspection Service

 

Date of this Version

2012

Citation

Published in Oikos 121: 1021–1026, 2012. Doi: 10.1111/j.1600-0706.2012.20353.x

Abstract

In light of current global changes to ecosystem function (e.g. climate change, trophic downgrading, and invasive species), there has been a recent surge of interest in exploring differences in nutrient cycling among ecosystem types. In particular, a growing awareness has emerged concerning the importance of scavenging in food web dynamics, although no studies have focused specifically on exploring differences in carrion consumption between aquatic and terrestrial ecosystems. In this forum we synthesize the scavenging literature to elucidate differences in scavenging dynamics between terrestrial and marine ecosystems, and identify areas where future research is needed to more clearly understand the role of carrion consumption in maintaining ecosystem function within each of these environments. Although scavenging plays a similar functional role in terrestrial and aquatic food webs, here we suggest that several fundamental differences exist in scavenging dynamics among these ecosystem types due to the unique selection pressures imposed by the physical properties of water and air. In particular, the movement of carcasses in marine ecosystems (e.g. wave action, upwelling, and sinking) diffuses biological activity associated with scavenging and decomposition across large, three-dimensional spatial scales, creating a unique spatial disconnect between the processes of production, scavenging, and decomposition, which in contrast are tightly linked in terrestrial ecosystems. Moreover, the limited role of bacteria and temporal stability of environmental conditions on the sea floor appears to have facilitated the evolution of a much more diverse community of macrofauna that relies on carrion for a higher portion of its nutrient consumption than is present in terrestrial ecosystems. Our observations are further discussed as they pertain to the potential impacts of climate change and trophic downgrading (i.e. removal of apex consumers from ecosystems) on scavenging dynamics within marine and terrestrial ecosystems.

Included in

Life Sciences Commons

Share

COinS