Mechanical & Materials Engineering, Department of

 

First Advisor

Linxia Gu

Date of this Version

12-2019

Comments

A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfilment of Requirements For the Degree of Doctor of Philosophy, Major: Engineering (Materials Engineering), Under the Supervision of Professor Linxia Gu. Lincoln, Nebraska: December 2019

Copyright 2019 Hozhabr Mozafari

Abstract

Formation of arterial plaque and stenosis is one of the main cardiovascular disease risk factors. Stenting is a popular approach to increase the inner diameter of the artery and provide an acceptable lumen gain. This is achieved by applying internal pressure to the arterial wall. Despite the desirable outcomes of this procedure, there are complexities and challenges that are being discussed among scholars in this area. Restenosis is one of these complications, in which smooth muscles cell start proliferation and remodeling in response of induced mechanical stresses. Another important issue is the placement of the stent and possible migration due to the continuous deformation and special contact state between tissue and stent struts. Finally, the mechanical properties of the stent and application of novel materials in order to improve its performance are the critical topics that also have been elaborated in the current research work. First of all, we developed a multi-scale model which is able to calculate load distribution in RVE scale and can be useful to assess the mechanical stresses experienced by smooth muscle cells. Moreover, stent migration has been simulated by using finite element modeling, and the effect of stent structure on this complication has been explained. Finally, the application of novel nano composite materials in stent design has been discussed. Developing 3D printed steel-PLLA and MgPLLA particle composites and the effect of added phases in micromechanical properties of composites has been evaluated.

Advisor: Linxia Gu

Share

COinS