Mechanical & Materials Engineering, Department of

 

Date of this Version

10-5-2023

Citation

PHYSICAL REVIEW E 108, 045102 (2023). DOI: 10.1103/PhysRevE.108.045102

Comments

Used by permission.

Abstract

Acoustofluidic systems often employ prefabricated acoustic scatterers that perturb the imposed acoustic field to realize the acoustophoresis of immersed microparticles. We present a numerical study to investigate the timeaveraged streaming and radiation force fields around a scatterer. Based on the streaming and radiation force field, we obtain the trajectories of the immersed microparticles with varying sizes and identify a critical transition size at which the motion of immersed microparticles in the vicinity of a prefabricated scatterer shifts from being streaming dominated to radiation dominated. We consider a range of acoustic frequencies to reveal that the critical transition size decreases with increasing frequency; this result explains the choice of acoustic frequencies in previously reported experimental studies.We also examine the impact of scatterer material and fluid properties on the streaming and radiation force fields, as well as on the critical transition size. Our results demonstrate that the critical transition size decreases with an increase in acoustic contrast factor: a nondimensional quantity that depends on material properties of the scatterer and the fluid. Our results provide a pathway to realize radiation force based manipulation of small particles by increasing the acoustic contrast factor of the scatterer, lowering the kinematic viscosity of the fluid, and increasing the acoustic frequency.

Share

COinS