Natural Resources, School of

 

Date of this Version

2011

Citation

Journal of Hydrology 408 (2011), pp. 19–34; doi:10.1016/j.jhydrol.2011.07.010

Comments

Copyright © 2011 Elsevier B.V. Used by permission.

Abstract

energy and water balance, especially in dry climatic regions, can have a significant impact on local water availability and, therefore, water resource management. The purpose of this study is to quantify the energy and water balance of a riparian wetland in a subhumid region of the central US, as well as the role of seasonal climate variability and vegetation phenology. The site is located in the Republican River basin in south-central Nebraska, where decreases in streamflow have been observed in recent decades. In an effort to reduce consumptive water use from evapotranspiration (ET), and thereby reclaim surface water, invasive species such as Phragmites australis have been removed throughout the riparian corridor of the river basin. In this study, we used energy/water balance monitoring stations, a Large Aperture Scintillometer (LAS), and numerous water and soil temperature probes to determine the energy and water balance during the 2009 growing season (April 11−October 3). Sensible heat flux was measured using the LAS, while ET was calculated as a residual of the energy balance (i.e., net radiation minus sensible heat flux and heat storage rates in the canopy, water, and soil). Rigorous quality control and uncertainty analyses were performed, and comparisons were also made with ET rates calculated via the simpler Priestley–Taylor method.

Results of the energy budget analysis indicate that the average ET rate for the wetland during the growing season was 4.4 mm day−1, with a maximum daily rate of 8.2 mm day−1 (occurring on June 29). Precipitation during the same 176-day period averaged 2.7 mm day−1. Net radiation and vegetation phenology were found to be the two largest drivers of seasonal variability in ET. Sensible heat flux was significantly larger than latent heat flux early in the season, when standing vegetation in the wetland was still dry and brown. By late May and early June, however, Bowen ratios had declined well below 0.5 in response to greener and more abundant vegetation, higher transpiration rates, and reduced sensible heat flux. Heat storage rates in the wetland were dominated by changes in water temperature (as compared to soil or canopy heat storage) and comprised a significant portion of the hourly energy balance. On daily mean timescales, changes in the rate of heat storage corresponded to ~13% of the variability in net radiation, while for the season-long average, the heat storage term was found to be essentially negligible. The Priestley–Taylor equation provided a reasonable estimate of ET during the height of the growing season but significantly overestimated ET during the beginning of the season (since it could not account for large sensible heat fluxes from the dry vegetation). Analysis of the wetland water balance showed seasonal variations in water level that were similar to changes in cumulative water inputs (i.e., precipitation minus ET). Portions of the season when the two curves had differing rates of change indicated periods of net water influx or outflux from other sources (primarily groundwater).