Natural Resources, School of


Date of this Version



Bogner DM, Kaemingk MA, Wuellner MR (2016) Consequences of Hatch Phenology on Stages of Fish Recruitment. PLoS ONE 11(10): e0164980.


Copyright © 2016 Bogner et al. This is an open access article distributed under the terms of the Creative Commons Attribution License


Little is known about how hatch phenology (e.g., the start, peak, and duration of hatching) could influence subsequent recruitment of freshwater fishes into a population. We used two commonly sympatric fish species that exhibit different hatching phenologies to examine recruitment across multiple life stages. Nine yellow perch (Perca flavescens) and bluegill (Lepomis macrochirus) annual cohorts were sampled from 2004 through 2013 across larval, age-0, age-1, and age-2 life stages in a Nebraska (U.S.A.) Sandhill lake. Yellow perch hatched earlier in the season and displayed a more truncated hatch duration compared to bluegill. The timing of hatch influenced recruitment dynamics for both species but important hatching metrics were not similar between species across life stages. A longer hatch duration resulted in greater larval yellow perch abundance but greater age-1 bluegill abundance. In contrast, bluegill larval and age-0 abundances were greater during years when hatching duration was shorter and commenced earlier, whereas age-0 yellow perch abundance was greater when hatching occurred earlier. As a result of hatch phenology, yellow perch recruitment variability was minimized sooner (age-0 life stage) than bluegill (age-1 life stage). Collectively, hatch phenology influenced recruitment dynamics across multiple life stages but was unique for each species. Understanding the complexities of when progeny enter an environment and how this influences eventual recruitment into a population will be critical in the face of ongoing climate change.