Natural Resources, School of


Date of this Version



Agronomy 2018, 8, 29


Copyright 2018 by the authors.

Open access



Agricultural oasis expansion and intensive management practices have occurred in arid and semiarid regions of China during the last few decades. Accordingly, regional carbon and water budgets have been profoundly impacted by agroecosystems in these regions. Therefore, study on the methods used to accurately estimate energy, water, and carbon exchanges is becoming increasingly important. Process-based models can represent the complex processes between land and atmosphere among agricultural ecosystems. However, before the models can be applied they must be validated under different environmental and climatic conditions. In this study, a process-based agricultural ecosystem model (Agro-IBIS) was validated for maize crops using 3 years of soil and biometric measurements at Wulanwusu agrometeorological site (WAS) located in the Shihezi oasis in Xinjiang, northwest China. The model satisfactorily represented leaf area index (LAI) during the growing season, simulating its peak values within the magnitude of 0–10%. The total biomass carbon was overestimated by 15%, 8%, and 16% in 2004, 2005, and 2006, respectively. The model satisfactorily simulated the soil temperature (0–10 cm) and volumetric water content (VWC) (0–25 cm) of farmland during the growing season. However, it overestimated soil temperature approximately by 4 C and VWC by 15–30% during the winter, coinciding with the period of no vegetation cover in Xinjiang. Overall, the results indicate that the model could represent crop growth, and seems to be applicable in multiple sites in arid oases agroecosystems of Xinjiang. Future application of the model will impose more comprehensive validation using eddy covariance flux data, and consider including dynamics of crop residue and improving characterization of the final stage of leaf development.