Agricultural Research Division of IANR

 

Date of this Version

10-13-2017

Citation

Published in Crop Sci. 57:3129–3144 (2017). doi: 10.2135/cropsci2017.04.0244.

Comments

U.S. government work.

Abstract

Dry bean (Phaseolus vulgaris L.) seeds are a major protein, carbohydrate, and mineral source in the human diet of peoples in multiple regions of the world. Seed mineral biofortification is an ongoing objective to improve this important food source. The objective of this research was to assess the seed mineral concentration of five macroelements and eight microelements in a large panel (n = 277) of modern race Durango and race Mesoamerica genotypes to determine if variability existed that could be exploited for targeted seed biofortification. Varieties that derive from these races are found in many diets throughout the world. The panel was grown in replicated trials under typical production conditions in the major bean growing regions of the United States, and a subset of the panel was also grown in replicated trials at three locations under control and terminal drought conditions. Except for K, seed mineral concentrations were higher for race Mesoamerica genotypes. Significantly higher seed concentrations for the majority of the minerals were observed for white-seeded genotypes and race Durango genotypes with the now preferred indeterminate, upright growth habit. Modern genotypes (since 1997) had equal or increased mineral concentrations compared with older genotypes. Drought affected mineral content differentially, having no effect on the microelement content but increased Co, Fe, and Ni concentrations. The correlation of Ca and Mn concentrations suggests that these elements may share seed deposition mechanisms. The high heritability for seed mineral concentration implies that breeding progress can be achieved by parental selection from this panel.

Share

COinS