Department of Physics and Astronomy: Publications and Other Research

 

Date of this Version

May 2001

Comments

Published in Mat. Res. Soc. Symp. Proc. Vol. 674. © 2001 Materials Research Society. Permission to use.

Abstract

The spin polarization of Sb overlayers on the semi-Heusler alloy NiMnSb is investigated in terms of the Landau-Ginzburg approach. The half-metallic semi-Heusler alloy NiMnSb acts as a ferromagnetic perturbation and induces a spin polarization in the semimetallic Sb overlayer. Using a Gaussian approximation, the propagation of the spin perturbation in the overlayer is calculated. The results are compared with spin-polarized inverse photoemission spectroscopy (SPIPES) results and with recent spin-dependent envelope-function approximation (SDEFA) predictions. The Landau-Ginzburg parameters are both band-structure and temperature dependent, and it is argued that thermal spin excitations lead to an injection depth decreasing as 1//T law at high temperatures.

Included in

Physics Commons

Share

COinS