Department of Physics and Astronomy: Publications and Other Research

 

Date of this Version

February 1991

Comments

Published by American Physical Society. Copyright 1991. Permission to use. Physical Review B 43 (1991) 3171–3179. http://prb.aps.org/.

Abstract

We have studied the magnetic ordering of terbium overlayers on Cu(100) and Ni(111), using angle-resolved photoemission. The 5p3/2 to 5p1/2 shallow-core-level branching ratios in different photoemission geometries provide a measure of the magnetic ordering in rare-earth-metal overlayers as a result of final-state effects in photoemission. We find that ferromagnetic substrates order paramagnetic terbium overlayers. This induced magnetic ordering is not a crystal-field effect and can be modeled by Ginzburg-Landau theory. Application of Ginzburg-Landau theory to our results suggests that the correlation length of paramagnetic terbium κ-1 is between 2.5 and 3.5 Å. Reversible increases in the extent of magnetic ordering at temperatures below the Tb Curie temperature are observed for terbium overlayers on both Cu(100) and Ni(111).

Included in

Physics Commons

Share

COinS