Research Papers in Physics and Astronomy

 

Date of this Version

3-1995

Comments

Published in Physical Review A Volume 51, Number 3, March 1995. Copyright © American Physical Society; used by permission.

Abstract

Apparatus and procedures are described for the measurement of absolute cross sections, differential in ejected electron energy and angle, for ionization of atomic and molecular hydrogen by ion impact. A hemispherical electrostatic energy analyzer, rotatable from 15° to 165° with respect to the direction of the incident ion beam, was used to measure energy spectra of secondary electrons from 1.5 to 300 eV. Cross sections at ten angles (nine at some energies) and five incident-ion energies from 20 to 114 keV for H+ +H2 collisions are given. The doubly differential cross sections were integrated over angle and electron energy to obtain singly differential and total-ionization cross sections. The uncertainty in the doubly differential cross sections is 21% at a secondary energy of 1.5 eV decreasing to 18% at 10 eV and above. The total cross sections have a rms deviation of 12% from recommended values. A broad peak at 6 eV in the energy spectrum of electrons from low-energy H+ +H2 collisions is attributed to autoionization.

Included in

Physics Commons

Share

COinS