Department of Physics and Astronomy: Publications and Other Research

 

Date of this Version

2014

Citation

ACS Nano 8:8 (2014)

Comments

Conflict of interest: The authors declare no competing financial interest.

Abstract

Formation of chemically ordered compounds of Fe and Au is inhibited in bulk materials due to their limited mutual solubility. However, here we report the formation of chemically ordered L12-type Fe3Au and FeAu3 compounds in Fe–Au sub-10 nm nanoparticles, suggesting that they are equilib-rium structures in size-constrained systems. The stability of these L12-ordered Fe3Au and FeAu3 com-pounds along with a previously discovered L10-ordered FeAu has been explained by a size-dependent equilibrium thermodynamic model. Furthermore, the spin ordering of these three com-pounds has been computed using ab initio first-principle calculations. All ordered compounds exhibit a substantial magnetization at room temperature. The Fe3Au had a high saturation magnetization of about 143.6 emu/g with a ferromagnetic spin structure. The FeAu3 nanoparticles displayed a low saturation magnetization of about 11 emu/g. This suggests an antiferromagnetic spin structure, with the net magnetization arising from uncompensated surface spins. First-principle calculations using the Vienna ab initio simulation package (VASP) indicate that ferromagnetic ordering is energetically most stable in Fe3Au, while antiferromagnetic order is predicted in FeAu and FeAu3, consistent with the experimental results.

Included in

Physics Commons

Share

COinS