Department of Physics and Astronomy: Publications and Other Research

 

Date of this Version

7-12-2016

Citation

PHYSICAL REVIEW A 94, 013408 (2016)

Comments

©2016 American Physical Society. Used by permission.

Abstract

Multistart spiral vortex patterns are predicted for the electron momentum distributions in the polarization plane following ionization of the helium atom by two time-delayed circularly polarized ultrashort laser pulses. For two ultraviolet (UV) pulses having the same frequency (such that two photons are required for ionization), single-color two-photon interferometry with corotating or counter-rotating time-delayed pulses is found to lead respectively to zero-start or four-start spiral vortex patterns in the ionized electron momentum distributions in the polarization plane. In contrast, two-color one-photon plus two-photon interferometry with time-delayed corotating or counter-rotating UV pulses is found to lead respectively to one-start or three-start spiral vortex patterns. These predicted multistart electron vortex patterns are found to be sensitive to the carrier frequencies, handedness, time delay, and relative phase of the two pulses. Our numerical predictions are obtained by solving the six-dimensional two-electron time-dependent Schrödinger equation (TDSE). They are explained analytically using perturbation theory (PT). Comparison of our TDSE and PT results for single-color two-photon processes probes the role played by the time-delay-dependent ionization cross channels in which one photon is absorbed from each pulse. Control of these cross channels by means of the parameters of the fields and the ionized electron detection geometries is discussed.

Share

COinS