Research Papers in Physics and Astronomy

 

Date of this Version

2012

Citation

PHYSICAL REVIEW B 85, 125407 (2012). DOI: 10.1103/PhysRevB.85.125407

Comments

Copyright © 2012 American Physical Society. Used by Permission.

Abstract

Utilization of the switchable spontaneous polarization of ferroelectric materials offers a promising avenue for the future of nanoelectronic memories and logic devices provided that nanoscale metal-ferroelectric-metal heterostructures can be engineered to maintain a bi-stable polarization switchable by an applied electric field. The most challenging aspect of this approach is to overcome the deleterious interface effects which tend to render ferroelectric polarization either unstable or unswitchable and which become ever more important as ferroelectric materials are produced thinner and thinner. Here we use first-principles density functional calculations and phenomenological modeling to demonstrate that a BaO/RuO2 interface termination sequence in SrRuO3/BaTiO3/SrRuO3 epitaxial heterostructures grown on SrTiO3 can lead to a nonswitchable polarization state for thin BaTiO3 films due to a fixed interface dipole. The unfavorable interface dipole at the BaO/RuO2 interface leads to a strong preference for one polarization state and, in thin film structures, leads to instability of the second state below a certain critical thickness, thereby making the polarization unswitchable.We analyze the contribution of this interface dipole to the energetic stability of these heterostructures. Furthermore, we propose and demonstrate that this unfavorable interface dipole effect can be alleviated by deposition of a thin layer of SrTiO3 at the BaO/RuO2 terminated interface. Our first-principles and phenomenological modeling predict that the associated change of the interface termination sequence to SrO/TiO2 on both sides of the heterostructure leads to a restoration of bi-stability with a smaller critical thickness, along with an enhancement of the barrier for polarization reversal. These results demonstrate that interface engineering is a viable approach to enhance ferroelectric properties at the nanoscale.

Share

COinS