Plant Pathology Department

 

Date of this Version

2002

Comments

Published in 7652–7657, PNAS, May 28, 2002, vol. 99, no. 11. Used by Permission

Abstract

The ability of Pseudomonas syringae pv. tomato DC3000 to be pathogenic on plants depends on the Hrp (hypersensitive response and pathogenicity) type III protein secretion system and the effector proteins it translocates into plant cells. Through iterative application of experimental and computational techniques, the DC3000 effector inventory has been substantially enlarged. Five homologs of known avirulence (Avr) proteins and five effector candidates, encoded by genes with putative Hrp promoters and signatures of horizontal acquisition, were demonstrated to be secreted in culture and/or translocated into Arabidopsis in a Hrp-dependent manner. These 10 Hrp-dependent outer proteins (Hops) were designated HopPtoC (Avr- PpiC2 homolog), HopPtoD1 and HopPtoD2 (AvrPphD homologs), HopPtoK (AvrRps4 homolog), HopPtoJ (AvrXv3 homolog), HopPtoE, HopPtoG, HopPtoH, HopPtoI, and HopPtoS1 (an ADP-ribosyltransferase homolog). Analysis of the enlarged collection of proteins traveling the Hrp pathway in P. syringae revealed an export-associated pattern of equivalent solvent-exposed amino acids in the N-terminal five positions, a lack of Asp or Glu residues in the first 12 positions, and amphipathicity in the first 50 positions. These characteristics were used to search the unfinished DC3000 genome, yielding 32 additional candidate effector genes that predicted proteins with Hrp export signals and that also possessed signatures of horizontal acquisition. Among these were genes encoding additional ADPribosyltransferases, a homolog of SrfC (a candidate effector in Salmonella enterica), a catalase, and a glucokinase. One ADP-ribosyltransferase and the SrfC homolog were tested and shown to be secreted in a Hrp-dependent manner. These proteins, designated HopPtoS2 and HopPtoL, respectively, bring the DC3000 Hrp-secreted protein inventory to 22.

Share

COinS