Plant Pathology Department

 

Date of this Version

October 2004

Comments

Published in PHYTOPATHOLOGY.

Abstract

Infection of Nicotiana obtusifolia plant introduction (PI) #555573 by the downy mildew pathogen Peronospora tabacina resulted in a compatible interaction, in which P. tabacina penetrated and freely colonized host leaf tissue. This interaction became incompatible 5 to 6 days later, with the appearance of necrotic lesions (NLs) and inhibition of pathogen growth and subsequent sporulation. NL development depended upon the presence of P. tabacina in host tissue, was not due to the effects of other microbes, and occurred co-incident in time with the pathogen’s ability to produce asexual sporangia on a susceptible N. obtusifolia genotype. Inhibition of the necrotic response by CoCl2 (a calcium channel blocker) and pathogen-induced transcription of a defense-related gene (PR-1a) suggested that necrosis was due to hypersensitive cell death in the host. In contrast, N. obtusifolia PI#555543 did not exhibit hypersensitivity upon infection by P. tabacina, but rather developed characteristic symptoms of tobacco blue mold disease: chlorotic lesions accompanied by abundant pathogen sporulation. Disease reactions scored on PI#555573 × PI#555543 F2 progeny inoculated with P. tabacina sporangia indicated that the resistance phenotype was due to the action of a single gene from N. obtusifolia PI#555573, which we have named Rpt1. To date, Rpt1 is the only gene known to confer a hypersensitive response (HR) to P. tabacina infection in any species of Nicotiana. A survey of wild N. obtusifolia revealed that the HR to P. tabacina was expressed in the progeny of 7 of 21 (33%) plants collected in southern Arizona, but not in the progeny of plants originating from Death Valley National Park in California and the Big Bend National Park in west Texas.

Share

COinS