Plant Science Innovation, Center for

 

Date of this Version

2015

Citation

Bioresource Technology 184 (2015), pp. 23–32.

doi: 10.1016/j.biortech.2014.10.119

Comments

Copyright © 2014 Elsevier Ltd. Used by permission.

Abstract

Microalgae exhibit enormous diversity and can potentially contribute to the production of biofuels and high value compounds. However, for most species, our knowledge of their physiology, metabolism, and gene regulation is fairly limited. In eukaryotes, gene silencing mechanisms play important roles in both the reversible repression of genes that are required only in certain contexts and the suppression of genome invaders such at transposons. The recent sequencing of several algal genomes is providing insights into the complexity of these mechanisms in microalgae. Collectively, glaucophyte, red, and green microalgae contain the machineries involved in repressive histone H3 lysine methylation, DNA cytosine methylation, and RNA interference. However, individual species often only have subsets of these gene-silencing mechanisms. Moreover, current evidence suggests that algal silencing systems function in transposon and transgene repression but their role(s) in gene regulation or other cellular processes remains virtually unexplored, hindering rational genetic engineering efforts.

Share

COinS