Psychology, Department of
Document Type
Article
Date of this Version
2012
Citation
Cogn Dev. 2012 ; 27(4): 401–418.
Abstract
This paper examines the contributions of dynamic systems theory to the field of cognitive development, focusing on modeling using dynamic neural fields. A brief overview highlights the contributions of dynamic systems theory and the central concepts of dynamic field theory (DFT). We then probe empirical predictions and findings generated by DFT around two examples—the DFT of infant perseverative reaching that explains the Piagetian A-not-B error, and the DFT of spatial memory that explain changes in spatial cognition in early development. A systematic review of the literature around these examples reveals that computational modeling is having an impact on empirical research in cognitive development; however, this impact does not extend to neural and clinical research. Moreover, there is a tendency for researchers to interpret models narrowly, anchoring them to specific tasks. We conclude on an optimistic note, encouraging both theoreticians and experimentalists to work toward a more theory-driven future.
Comments
Copyright (c) 2012 Elsevier. Used by permission.