U.S. Department of Agriculture: Forest Service -- National Agroforestry Center

 

Document Type

Article

Date of this Version

2004

Citation

In: Goldammer, J.; de Ronde, C., eds. Fire management handbook for sub-Sahara Africa. Frieburg, Germany: Global Fire Monitoring Center, 2004. Pp. 158-211.

Abstract

In the last decade, research has proven that remote sensing can provide very useful support to fire managers. This chapter provides an overview of the types of information remote sensing can provide to the fire community. First, it considers fire management information needs in the context of a fire management information system. An introduction to remote sensing then precedes a description of fire information obtainable from remote sensing data (such as vegetation status, active fire detection and burned areas assessment). Finally, operational examples in five African countries illustrate the practical use of remotely sensed fire information.

As indicated in previous chapters, fire management usually comprises activities designed to control the frequency, area, intensity or impact of fire. These activities are undertaken in different institutional, economic, social, environmental and geographical contexts, as well as at different scales, from local to national. The range of fire management activities also varies considerably according to the management issues at stake, as well as the available means and capacity to act. Whatever the level, effective fire management requires reliable information upon which to base appropriate decisions and actions. Information will be required at many different stages of this fire management system. To illustrate this, we consider a typical and generic description of a fire "management loop", as provided in Figure 8.1.

  • Fire management objectives result from fire related "knowledge". For example, they may relate to sound ecological reasons for prescribed burning in a particular land management context, or to frequent, uncontrolled fires threatening valuable natural or human resources. Whatever the issues, appropriate objectives require scientific knowledge (such as fire impact on ecosystems components, such as soil and vegetation), as well as up-to date monitoring information (such as vegetation status, fire locations, land use, socioeconomic context, etc.).
  • Policies, generally at a national and governmental level, provide the official or legal long term framework (e.g. five to ten years) to undertake actions. A proper documentation of different fire issues, and their evolution, will allow their integration into appropriate policies, whether specific to fire management, or complementary to other policies in areas such as forestry, rangeland, biodiversity, land tenure, etc.
  • Strategies are found at all levels of fire management. They provide a shorter-term framework (e.g. one to five years) to prioritise fire management activities. They involve the development of a clear set of objectives and a clear set of activities to achieve these objectives. They may also include research and training inputs required, in order to build capacity and to answer specific questions needed to improve fire management. The chosen strategy will result from a trade-off between priority fire management objectives and the available capacity to act (e.g. institutional framework, budget, staff, etc.), and will lead towards a better allocation of resources for fire management operations to achieve specific objectives. One example in achieving an objective of conserving biotic diversity may be the implementation of a patch-mosaic burning system (Brockett et al., 200 1 ) instead of a prescribed block burning system, based on an assumption that the former should better promote biodiversity in the long-term than the latter (Parr & Brockett, 1999). This strategy requires the implementation of early season fires to reduce the size of later season fires. The knowledge of population movements, new settlements or a coming El Nino season, should help focus the resources usage, as these factors might influence the proportion as well as the locations of area burned. Another strategy may be to prioritise the grading of fire lines earlier than usual based on information on high biomass accumulation. However, whatever the strategies, they need to be based on reliable information.

Share

COinS