U.S. Department of Commerce


Date of this Version



Published in Reproduction (2009) 138 391–405


The reproductive physiology of the Pacific white-sided dolphin, Lagenorhynchus obliquidens, was characterized to facilitate the development of artificial insemination (AI) using cryopreserved spermatozoa. Specific objectives were to: 1) describe reproductive seasonality of the Pacific white sided dolphins; 2) describe urinary LH and ovarian steroid metabolites during the estrous cycle; 3) correlate LH and ovarian steroidal metabolite patterns to ultrasound-monitored follicular growth and ovulation; and 4) assess the efficacy of synchronizing estrus, sperm collection/cryopreservation, and intrauterine insemination. Ovulations (64%, n=37) and conceptions (83%, n=18) occurred from August to October. Peak mean serum testosterone (24 ng/ml), cross-sectional testicular area (41.6 cm2), and sperm concentration (144.3×107 sperm/ml) occurred in July, August, and September respectively. Spermatozoa were only found in ejaculates from July to October. Estrous cycles (n=22) were 31 d long and were comprised of a 10 d follicular and 21 d luteal phase. Ovulation occurred 31.2 h after the onset of the LH surge and 19.3 h after the LH peak. Follicular diameter and circumference within 12 h of ovulation were 1.52 and 4.66 cm respectively. Estrus synchronization attempts with altrenogest resulted in 17 (22%) ovulatory cycles with ovulation occurring 21 d post-altrenogest. Ten AI attempts using cryopreserved semen resulted in five pregnancies (50%). The mean gestation length was 356 days (range 348–367). These data provide new information on the Pacific whitesided dolphin’s reproductive physiology and collectively enabled the first application of AI in this species.