US Department of Energy

 

Date of this Version

2004

Citation

Journal of Contaminant Hydrology 68 (2004) 217– 238; doi:10.1016/S0169-7722(03)00143-8

Abstract

A theoretical and experimental study of cation exchange in high ionic strength electrolytes was performed using pristine subsurface sediments from the U.S. Department of Energy Hanford site. These sediments are representative of the site contaminated sediments impacted by release of high level waste (HLW) solutions containing 137Cs+ in NaNO3 brine. The binary exchange behavior of Cs+–Na+, Cs+–K+, and Na+–K+ was measured over a range in electrolyte concentration. Vanselow selectivity coefficients (Kv) that were calculated from the experimental data using Pitzer model ion activity corrections for aqueous species showed monotonic increases with increasing electrolyte concentrations. The influence of electrolyte concentration was greater on the exchange of Na+–Cs+ than K+–Cs+, an observation consistent with the differences in ion hydration energy of the exchanging cations. A previously developed two-site ion exchange model [Geochimica et Cosmochimica Acta 66 (2002) 193] was modified to include solvent (water) activity changes in the exchanger phase through application of the Gibbs–Duhem equation. This water activity-corrected model well described the ionic strength effect on binary Cs+ exchange, and was extended to the ternary exchange system of Cs+–Na+–K+ on the pristine sediment. The model was also used to predict 137Cs+ distribution between sediment and aqueous phase (Kd) beneath a leaked HLW tank in Hanfordd’s S-SX tank using the analytical aqueous data from the field and the binary ion exchange coefficients for the pristine sediment. The Kd predictions closely followed the trend in the field data and were improved by consideration of water activity effects that were considerable in certain regions of the vadose zone plume.