U.S. Environmental Protection Agency
Document Type
Article
Date of this Version
2010
Citation
Published in Aquatic Toxicology 96 (2010) 264–272. Doi:10.1016/j.aquatox.2009.11.004
Abstract
Temporal and spatial variability in estrogenicity has been documented formanytreated wastewater effluents with the consequences of this variability on the expression of biomarkers of endocrine disruption being largely unknown. Laboratory exposure studies usually utilize constant exposure concentrations which may produce biological effects that differ from those observed in organisms exposed in natural environments. In this study, we investigated the effects of differential timing of exposures with 17β - estradiol (E2) on a range of fathead minnow biomarkers to simulate diverse environmentally relevant exposure profiles. Two 21-day, replicate experiments were performed exposing mature male fathead minnows to E2 at time-weighted mean concentrations (similar average exposure to the contaminant during the 21-day exposure period; 17 ng E2/L experiment 1; 12 ng E2/L experiment 2) comparable to E2 equivalency values (EEQ) reported for several anthropogenically altered environments. A comparable time-weighted mean concentration of E2 was applied to five treatments which varied in the daily application schema: E2 was either applied at a steady rate (ST), in a gradual decreasing concentration (HI), a gradual increasing concentration (LO), applied intermittently (IN), or at a randomly varying concentration (VA). We assessed a range of widely used physiological (vitellogenin mRNA induction and plasma concentrations), anatomical (body and organ indices, secondary sex characteristics, and histopathology), and behavioral (nest holding) biomarkers reported to change following exposure to endocrine active compounds (EACs). All treatments responded with a rise in plasma vitellogenin concentration when compared with the ethanol carrier control. Predicatively, vitellogenin mRNA induction, which tracked closely with plasma vitellogenin concentrations in most treatments was not elevated in the HI treatment, presumably due to the lack of E2 exposure immediately prior to analysis. The ability of treatment male fish to hold nest sites in direct competition with control males was sensitive to E2 exposure and did yield statistically significant differences between treatments and carrier control. Other biological endpoints assessed in this study (organosomatic indices, secondary sex characteristics) varied little between treatments and controls. This study indicates that a broad suite of endpoints is necessary to fully assess the biological consequences of fish exposure to estrogens and that for at least field studies, a combination of vitellogenin mRNA and plasma vitellogenin analysis are most promising in deciphering exposure histories of wild-caught and caged fishes.