US Geological Survey

 

Date of this Version

2000

Comments

Published by U.S. Geological Survey, Water-Resources Investigations Report 99-4286, (2000)

Abstract

Metals transport in the Sacramento River, northern California, was evaluated on the basis of samples of water, suspended colloids, streambed sediment, and caddisfly larvae that were collected on one to six occasions at 19 sites in the Sacramento River Basin from July 1996 to June 1997. Four of the sampling periods (July, September, and November 1996; and May–June 1997) took place during relatively low-flow conditions and two sampling periods (December 1996 and January 1997) took place during high-flow and flooding conditions; respectively. Tangential-flow ultrafiltration with 10,000 nominal molecular weight limit, or daltons (0.005 micrometer equivalent), pore-size membranes was used to separate metals in streamwater into ultrafiltrate (operationally defined dissolved fraction) and retentate (colloidal fraction) components, respectively. Conventional filtration with capsule filters (0.45 micrometer pore-size) and membrane filters (0.40 micrometer pore-size) and totalrecoverable analysis of unfiltered (whole-body) samples were done for comparison at all sites. Because the total-recoverable analysis involves an incomplete digestion of particulate matter, a more reliable measurement of whole-water concentrations is derived from the sum of the dissolved component that is based on the ultrafiltrate plus the suspended component that is based on a total digestion of colloid concentrates from the ultrafiltration retentate. Metals in caddisfly larvae were determined for whole-body samples and cytosol extracts, which are intercellular solutions that provide a more sensitive indication of the metals that have been bioaccumulated.

Trace metals in acidic, metal-rich drainage from abandoned and inactive sulfide mines were observed to enter the Sacramento River system (specifically, into both Shasta Lake and Keswick Reservoir) in predominantly dissolved form, as operationally defined using ultrafiltrates. The predominant source of acid mine drainage to Keswick Reservoir is Spring Creek, which drains the Iron Mountain mine area. Copper concentrations in filtered samples from Spring Creek taken during December 1996, January 1997, and May 1997 ranged from 420 to 560 micrograms per liter. Below Keswick Dam, copper concentrations in conventionally filtered samples ranged from 0.5 micrograms per liter during September 1996 to 9.4 micrograms per liter during January 1997; the latter concentration exceeded the applicable water-quality standard. The proportion of trace metals that was dissolved (versus colloidal) in samples collected at Shasta and Keswick dams decreased in the order cadmium ≈ zinc > copper > aluminum ≈ iron ≈ lead ≈ mercury. At four sampling sites on the Sacramento River at various distances downstream of Keswick Dam (Bend Bridge, 71 kilometers; Colusa, 256 kilometers; Verona, 360 kilometers; and Freeport, 412 kilometers) concentrations of these seven metals were predominantly colloidal during both high- and low-flow conditions.

Because copper compounds are used extensively as algaecides in rice farming, agricultural drainage at the Colusa Basin Drain was sampled in June 1997 during a period shortly after copper applications to newly planted rice fields. Copper concentrations ranged from 1.3 to 3.0 micrograms per liter in filtered samples and from 12 to 13 micrograms per liter in whole-water samples (total recoverable analysis). These results are consistent with earlier work by the U.S. Geological Survey indicating that copper in rice-field drainage likely represents a detectable, but relatively minor source of copper to the Sacramento River.

Lead isotope data from suspended colloids and streambed sediments collected during October and November 1996 indicate that lead from acid mine drainage sources became a relatively minor component of the total lead at the site located 71 kilometers downstream of Keswick Dam and beyond. Cadmium, copper, and zinc concentrations in caddisfly larvae were elevated at several sites downstream of Keswick Dam, but concentrations of aluminum, iron, lead, and mercury were relatively low, especially in the cytosol extracts. Cadmium showed the highest degree of bioaccumulation in whole-body and cytosol analyses, relative to an unmineralized control site (Cottonwood Creek). Cadmium bioaccumulation persisted in samples collected as far as 118 kilometers downstream of Keswick Dam, consistent with transport in a form more bioavailable than lead.

Share

COinS