U.S. Department of Veterans Affairs

 

Date of this Version

2018

Document Type

Article

Citation

Free Radical Biology and Medicine 124 (2018) 408–419

Comments

© 2018 Published by Elsevier Inc.

This document is a U.S. government work and is not subject to copyright in the United States.

https://doi.org/10.1016/j.freeradbiomed.2018.06.024

Abstract

Oxidative stress is a pathogenic feature in vitreoretinal disease. However, the ability of the inner retina to manage metabolic waste and oxidative stress is unknown. Proteomic analysis of antioxidants in the human vitreous, the extracellular matrix opposing the inner retina, identified superoxide dismutase-3 (SOD3) that localized to a unique matrix structure in the vitreous base and cortex. To determine the role of SOD3, Sod3-/- mice underwent histological and clinical phenotyping. Although the eyes were structurally normal, at the vitreoretinal interface Sod3-/- mice demonstrated higher levels of 3-nitrotyrosine, a key marker of oxidative stress. Pattern electroretinography also showed physiological signaling abnormalities within the inner retina. Vitreous biopsies and epiretinal membranes collected from patients with diabetic vitreoretinopathy (DVR) and a mouse model of DVR showed significantly higher levels of nitrates and/or 3-nitrotyrosine oxidative stress biomarkers suggestive of SOD3 dysfunction. This study analyzes the molecular pathways that regulate oxidative stress in human vitreous substructures. The absence or dysregulation of the SOD3 antioxidant at the vitreous base and cortex results in increased oxidative stress and tissue damage to the inner retina, which may underlie DVR pathogenesis and other vitreoretinal diseases.

Share

COinS