Virology, Nebraska Center for

 

Date of this Version

2011

Citation

Published in The Journal of Biological Chemistry 287:10 (2012), pp. 7640–7651

Comments

Copyright © 2012 by The American Society for Biochemistry and Molecular Biology, Inc. Used by permission.

Abstract

Many viruses use a pH-dependent pathway for fusion with host cell membrane, the mechanism of which is still poorly understood. Here we report that a subtle leucine (Leu)-valine (Val) change at position 501 in the envelope glycoproteins (Envs) of two related retroviruses, jaagsiekte sheep retro-virus (JSRV) and enzootic nasal tumor virus (ENTV), is responsible for their distinct low pH requirements for membrane fusion and infection. The Leu and Val residues are predicted to reside within the C-terminal heptad repeat (HR2) region of JSRV and ENTV Envs, particularly proximal to the hairpin turn of the putative six-helix bundle (6HB). Substitution of the JSRV Leu with a Val blocked the Env-mediated membrane fusion at pH 5.0, whereas replacement of the ENTV Val with a Leu rendered the ENTV Env capable of fusing at pH 5.0. A Leu-Val change has no apparent effect on the stability of native Env but appears to stabilize an intermediate induced by receptor binding. These results are consistent with the existence of at least two metastable conformations of these viral glycoproteins, the native prefusion conformation and a receptor-induced metastable intermediate. Collectively, this work represents an interesting perhaps unique example whereby a simple Leu-Val change has critical impact on pH-dependent virus fusion and entry.

Share

COinS