Agronomy and Horticulture Department


Date of this Version



Agriculture, Ecosystems and Environment 218 (2016) 95–106


Copyright 2015 Elsevier B.V.

This document is a U.S. government work and is not subject to copyright in the United States.


It is critical to evaluate conservation practices that protect soil and water resources from climate change in the Midwestern United States, a region that produces one-quarter of the world’s soybeans and one-third of the world’s maize. An over-winter cover crop in a maize–soybean rotation offers multiple potential benefits that can reduce the impacts of higher temperatures and more variable rainfall; some of the anticipated changes for the Midwest. In this experiment we used the Agricultural Production Systems sIMulator (APSIM) to understand how winter rye cover crops impact crop production and environmental outcomes, given future climate change. We first tested APSIM with data from a long-term maize–soybean rotation with and without winter rye cover crop field site. Our modeling work predicted that the winter rye cover crop has a neutral effect on maize and soybean yields over the 45 year simulation period but increases in minimum and maximum temperatures were associated with reduced yields of 1.6–2.7% by decade. Soil carbon decreased in both the cover crop and no cover crop simulations, although the cover crop is able to significantly offset (3% less loss over 45 years) this decline compared to the no cover crop simulation. Our predictions showed that the cover crop led to an 11–29% reduction in erosion and up to a 34% decrease in nitrous oxide emissions (N2O). However, the cover crop is unable to offset future predicted yield declines and does not increase the overall carbon balance relative to current soil conditions.