Agronomy and Horticulture Department

 

ORCID IDs

Cody F. Creech https://orcid.org/0000-0002-5334-4814

Date of this Version

2020

Citation

Simão LM, Easterly AC, Kruger GR, Creech CF. Winter wheat residue impact on soil water storage and subsequent corn yield. Agronomy Journal. 2021;1–11. https://doi.org/10.1002/agj2.20459

Comments

This is an open access article under the terms of the Creative Commons Attribution License. © 2020 The Authors.

Abstract

Standing winter wheat (Triticum aestivum L.) residue can capture snow, reduce soil erosion and water evaporation, and increase crop yields in semi-arid environments. Solid-stemmed winter wheat (SSWW) varieties may remain standing longer in the field; however, SSWW consistently yields less than conventional hollow-stemmed winter wheat (HSWW). This research investigates if the negative economic impact of yield loss of SSWW may be overcome by increasing the subsequent corn (Zea mays L.) yield due to increased snow capture and soil moisture. The experiment covered two cycles of a wheat–corn–fallow rotation in two separate fields between 2016 and 2019 near Sidney, NE. Five wheat varieties were tested (four varieties HSWW and one SSWW). Treatments (variety) were arranged in a randomized complete block design with four replications. ‘Warhorse’ (SSWW)and ‘Settler CL’ (HSWW)had the lowest grain yield (2,119 and 2,153 kg ha−1, respectively) in a drier year. Warhorse (SSWW) residue did not persist standing longer in the field compared with other HSWW varieties. No advantage of SSWW over HSWW was observed in enhancing soil moisture for yearswith average precipitation during the corn growing season, and consequently, corn yield did not increase. These results suggest that SSWW should be considered only if the risk of crop failure from wheat stem sawfly (Cephus cinctus) would reduce HSWW grain yields below those achieved when using SSWW.

Share

COinS