Agronomy and Horticulture, Department of

 

Document Type

Article

Date of this Version

2021

Citation

Agronomy Journal. 2021;1–23.

DOI: 10.1002/agj2.20627

Comments

U.S. government work

Abstract

Improving corn (Zea mays L.) N fertilizer rate recommendation tools is necessary for improving farmers’ profits and minimizing N pollution. Research has repeatedly shown that weather and soil factors influence available N and crop N need. Adjusting available corn N recommendation tools with soil and weather measurements could improve farmers’ ability to manage N. The aim of this research was to improve publicly available N recommendation tools with site-specific soil and weather measurements. Information from49 site-years ofNresponse trials in theU.S. Midwest was used to evaluate 21 rate recommendation tools for a single (at-planting) and split (at-planting + sidedress) N application. Using elastic net and decision tree algorithms, the difference between each tool’s N recommendation and the economically optimum nitrogen rate (EONR) was modeled against soil and weather measurements. The model’s predicted values were used to adjust the tools. Unadjusted the best performing tool had r2 = .24; after adjustment, the best performing tool had r2 = .57. Overall tool improvement was modest and sometimes required many additional inputs. Using weather measurements (e.g., evenness of rainfall or abundant and well-distributed rainfall) helped increase N recommendations by accounting for N loss while soil measurements (e.g., pH and total C) helped decrease N recommendations when there was sufficient available soil N. This investigation showed that incorporating soil and weather measurements is a viable approach for improving corn N recommendation tools regionally; but even with adjustments, tools still have room for additional improvement.

Share

COinS