Agronomy and Horticulture Department


Date of this Version



HortTechnology (February 2021) 31:1, pp 136-143



This is an open access article distributed under the CC BY-NC-ND license


Abrasive weeding is a nonchemical weed control tactic that uses small, gritty materials propelled with compressed air to destroy weed seedlings. Organic fertilizers have been used successfully as abrasive grits to control weeds, but the goal for this study was to explore the effects of fertilizer grit, application rates, and background soil fertility on weeds, plant available nitrogen (N) uptake, and crop yield. Field trials were conducted in organic ‘Carmen’ sweet red pepper (Capsicum annuum) and organic ‘Gypsy’ broccoli (Brassica oleracea var. italica) and treatments included organic fertilizer grit (8N–0.9P–3.3K vs. 3N–3.1P–3.3K), grit application rates (low vs. high), compost amendments (with and without), and weedy and weed-free controls. Weed biomass was harvested at 84 days and 65 days after transplanting for pepper and broccoli, respectively. Simulated total plant available N (nitrate D ammonium) uptake was measured with ion exchange resin stakes between 7 and 49 days after the first of two grit applications. Produce was harvested at maturity, graded for marketability, and weighed. The higher grit application rate, regardless of fertilizer type, reduced the weed biomass by 75% to 89% for pepper and by 86% to 99% for broccoli. By 5 weeks after the first grit application, simulated plant N uptake was greatest following grit application with the 8% N fertilizer, followed by the 3%Nfertilizer, and lowest in the weedy control. The high grit application rate of 8% N fertilizer increased pepper yield by 112% compared with the weedy control, but it was similar to that of the weed-free control. Broccoli was less responsive to abrasive grits, with yield changes ranging from no difference to up to a 36% increase (relative to the weedy control) depending on the application rate and compost amendment. This is the first evidence indicating that the nutrient composition of organic fertilizer abrasive grits can influence in-season soil N dynamics, weed competition, and crop yield. The results suggest that abrasive weeding technology could be leveraged to improve the precision of in-season fertilizer management of organic crops.