Agronomy and Horticulture Department


Date of this Version



Published in Landscape Ecology, 2022



Copyright © 2022 Fogarty, Peterson, & Twidwell, under license to Springer Nature B.V. Used by permission.


Context Woody encroachment is the process whereby grasslands transition to a woody-dominated state. This process is a global driver of grassland decline and is ultimately the outcome of increased woody plant recruitment in grasslands. Yet, little is known about how recruitment distances structure spatial patterns of encroachment.

Objectives Here, we develop a recruitment curve to describe the scatter of woody plant recruitment around seed sources and examine how this structures spatial patterns of encroachment.

Methods We developed a recruitment curve for Juniperus virginiana using an encroachment dataset that captures spread from tree plantings into treeless grassland sites in the Nebraska Sandhills (USA). In addition, we used height classes of encroaching J. virginiana as subsequent time steps of an encroachment process to examine how the leading edge of encroachment expanded over time.

Results The recruitment curve was characterized by a fat-tailed distribution. Most recruitment occurred locally, within 157 m of seed sources (95th percentile distance), while, sparse long-distance recruitment characterized the curve’s tail. Expansion of the leading edge of encroachment was characterized by two features: (1) a slow moving, high density area near tree plantings and (2) rapid expansion of the distribution’s tail, driven by long-distance recruitment in treeless areas.

Conclusion Our results show a high capacity for woody plant invasion of grasslands. Local recruitment drives transitions to woody dominance, while long-distance recruitment generates a rapidly advancing leading edge. Plans to conserve and restore grasslands will require spatially informed strategies that account for local and long-distance recruitment of woody plants.