Papers in the Biological Sciences


Date of this Version





U.S. government work.


Floral herbivory represents a major threat to plant reproductive success, driving the importance of plant tolerance mechanisms that minimize fitness costs. However, the cumulative insect herbivory plants experience under natural conditions complicates predictions about tolerance contributions to net fitness. Apical damage can lead to compensatory seed production from late season flowering that ameliorates early season fitness losses. Yet, the compensation realized depends on successful development and herbivore escape by later season flowers. Using monocarpic perennial Cirsium canescens, we quantified seed-reproductive fitness of plants with vs. without experimental damage to the early-developing large apical flower head, with and without a 30–40% herbivory reduction on subsequent flower heads, for two flowering cohorts. Plants with reduced herbivory clearly demonstrated the release of apical dominance and compensation, not overcompensation, for apical damage via greater seed maturation by later flower heads. In contrast, plants that experienced ambient herbivory levels on subsequent heads undercompensated for early apical damage. Individuals had lower total seed set when the apical head was damaged. Compensation was, therefore, possible through a small increase in total flower heads, caused by a higher rate of floral bud survival, and a higher seed maturation rate by subsequent heads, leading to more viable seeds per matured flower head. With ambient cumulative floral herbivory, compensation for apical damage was not sufficient to improve fitness. Variation in the intensity of biological interactions played a role in the success of plant tolerance as a mechanism to maximize individual fitness.

Included in

Biology Commons