Biological Systems Engineering, Department of


Document Type


Date of this Version



Acta Biomaterialia 18 (May 2015), pp. 88–99.

doi: 10.1016/j.actbio.2015.02.016


Copyright © 2015 Acta Materialia, Inc. Published by Elsevier Ltd. Used by permission.


Sculptured thin film (STF) substrates consist of nanocolumns with precise orientation, intercolumnar spacing, and optical anisotropy, which can be used as model biomaterial substrates to study the effect of homogenous nanotopographies on the three-dimensional distribution of adsorbed proteins. Generalized ellipsometry was used to discriminate between the distributions of adsorbed FN either on top of or within the intercolumnar void spaces of STFs, afforded by the optical properties of these precisely crafted substrates. Generalized ellipsometry indicated that STFs with vertical nanocolumns enhanced total FN adsorption two-fold relative to flat control substrates and the FN adsorption studies demonstrate different STF characteristics influence the degree of FN immobilization both on top and within intercolumnar spaces, with increasing spacing and surface area enhancing total protein adsorption. Mouse fibroblasts or mouse mesenchymal stem cells were subsequently cultured on STFs, to investigate the effect of highly ordered and defined nanotopographies on cell adhesion, spreading, and proliferation. All STF nanotopographies investigated in the absence of adsorbed FN were found to significantly enhance cell adhesion relative to flat substrates; and the addition of FN to STFs was found to have cell-dependent effects on enhancing cell-material interactions. Furthermore, the amount of FN adsorbed to the STFs did not correlate with comparative enhancements of cell-material interactions, suggesting that nanotopography predominantly contributes to the biocompatibility of homogenous nanocolumnar surfaces. This is the first study to correlate precisely defined nanostructured features with protein distribution and cell-nanomaterial interactions. STFs demonstrate immense potential as biomaterial surfaces for applications in tissue engineering, drug delivery, and biosensing.