Biological Systems Engineering


Date of this Version



Agricultural Systems 203 (2022) 103497.


Open access


CONTEXT: Automated monitoring of the soil-plant-atmospheric continuum at a high spatiotemporal resolution is a key to transform the labor-intensive, experience-based decision making to an automatic, data-driven approach in agricultural production. Growers could make better management decisions by leveraging the real-time field data while researchers could utilize these data to answer key scientific questions. Traditionally, data collection in agricultural fields, which largely relies on human labor, can only generate limited numbers of data points with low resolution and accuracy. During the last two decades, crop monitoring has drastically evolved with the advancement of modern sensing technologies. Most importantly, the introduction of IoT (Internet of Things) into crop, soil, and microclimate sensing has transformed crop monitoring into a quantitative and data-driven work from a qualitative and experience-based task.

OBJECTIVE: Ag-IoT systems enable a data pipeline for modern agriculture that includes data collection, transmission, storage, visualization, analysis, and decision-making. This review serves as a technical guide for Ag-IoT system design and development for crop, soil, and microclimate monitoring.

METHODS: It highlighted Ag-IoT platforms presented in 115 academic publications between 2011 and 2021 worldwide. These publications were analyzed based on the types of sensors and actuators used, main control boards, types of farming, crops observed, communication technologies and protocols, power supplies, and energy storage used in Ag-IoT platforms.