Biological Systems Engineering, Department of


Document Type


Date of this Version



Computers and Electronics in Agriculture 215 (2023) 108420



This is an open access article under the CC BY license


Precision Agriculture (PA) promises to meet the future demands for food, feed, fiber, and fuel while keeping their production sustainable and environmentally friendly. PA relies heavily on sensing technologies to inform site-specific decision supports for planting, irrigation, fertilization, spraying, and harvesting. Traditional point-based sensors enjoy small data sizes but are limited in their capacity to measure plant and canopy parameters. On the other hand, imaging sensors can be powerful in measuring a wide range of these parameters, especially when coupled with Artificial Intelligence. The challenge, however, is the lack of computing, electric power, and connectivity infrastructure in agricultural fields, preventing the full utilization of imaging sensors. This paper reported AICropCAM, a field-deployable imaging framework that integrated edge image processing, Internet of Things (IoT), and LoRaWAN for low-power, long-range communication. The core component of AICropCAM is a stack of four Deep Convolutional Neural Networks (DCNN) models running sequentially: CropClassiNet for crop type classification, CanopySegNet for canopy cover quantification, PlantCountNet for plant and weed counting, and InsectNet for insect identification. These DCNN models were trained and tested with >43,000 field crop images collected offline. AICropCAM was embodied on a distributed wireless sensor network with its sensor node consisting of an RGB camera for image acquisition, a Raspberry Pi 4B single-board computer for edge image processing, and an Arduino MKR1310 for LoRa communication and power management. Our testing showed that the time to run the DCNN models ranged from 0.20 s for InsectNet to 20.20 s for CanopySegNet, and power consumption ranged from 3.68 W for InsectNet to 5.83 W for CanopySegNet. The classification model CropClassiNet reported 94.5 % accuracy, and the segmentation model CanopySegNet reported 92.83 % accuracy. The two object detection models PlantCountNet and InsectNet reported mean average precision of 0.69 and 0.02 for the test images. Predictions from the DCNN models were transmitted to the ThingSpeak IoT platform for visualization and analytics. We concluded that AICropCAM successfully implemented image processing on the edge, drastically reduced the amount of data being transmitted, and could satisfy the real-time need for decision-making in PA. AICropCAM can be deployed on moving platforms such as center pivots or drones to increase its spatial coverage and resolution to support crop monitoring and field operations.