Department of Chemistry
Document Type
Article
Date of this Version
2015
Citation
Scientific Reports, 5:18149
Abstract
1,2,4-Butanetriol (BT) is a valuable chemical with extensive applications in many different fields. The traditional chemical routes to synthesize BT suffer from many drawbacks, e.g., harsh reaction conditions, multiple steps and poor selectivity, limiting its industrial production. In this study, an engineered Escherichia coli strain was constructed to produce BT from xylose, which is a major component of the lignocellulosic biomass. Through the coexpression of a xylose dehydrogenase (CCxylB) and a xylonolactonase (xylC) from Caulobacter crescentus, native E. coli xylonate dehydratase (yjhG), a 2-keto acid decarboxylase from Pseudomonas putida (mdlC) and native E. coli aldehyde reductase (adhP) in E. coli BL21 star(DE3), the recombinant strain could efficiently convert xylose to BT. Furthermore, the competitive pathway responsible for xylose metabolism in E. coli was blocked by disrupting two genes (xylA and EcxylB) encoding xylose isomerase and xyloluse kinase. Under fed-batch conditions, the engineered strain BL21ΔxylAB/pE-mdlCxylBC&pA-adhPyjhG produced up to 3.92 g/L of BT from 20 g/L of xylose, corresponding to a molar yield of 27.7%. These results suggest that the engineered E. coli has a promising prospect for the large-scale production of BT.
Included in
Analytical Chemistry Commons, Medicinal-Pharmaceutical Chemistry Commons, Other Chemistry Commons
Comments
Copyright 2015 The Authors.