Published Research - Department of Chemistry



Lai-Sheng Wang: 0000-0003-1816-5738

Xiao Cheng Zeng: 0000-0003-4672-8585

Date of this Version



Published in Journal of Physical Chemistry C 121 (2017), pp 18234−18243.

DOI: 10.1021/acs.jpcc.7b04997


Copyright © 2017 American Chemical Society. Used by permission.


We report a combined photoelectron spectroscopy and theoretical study of the structural evolution of aluminum cluster anions doped with two gold atoms, Au2Aln (n = 3−11). Well-resolved photoelectron spectra have been obtained at several photon energies and are used to compare with theoretical calculations to elucidate the structures of the bimetallic clusters. Global minima of the Au2Aln clusters were searched using the basin-hopping method combined with density functional theory calculations. Vertical detachment energies were computed for the low-lying isomers with the inclusion of spin−orbit effects and were used to generate simulated photoelectron spectra. Au2Al2 was previously found to exhibit a tetrahedral structure, whereas Au2Al3 is found currently to be planar. Beyond n = 3, the global minima of Au2Aln are dominated by three-dimensional structures. A robust square-bipyramidal Al6 motif is observed for n = 6−9, leading to a highly stable tubular-like global minimum for Au2Al9. Compact three-dimensional structures are observed for n = 10 and 11. Except for Au2Al4, Au2Al6, and Au2Al7, the two gold atoms are separated in these digold-atom-doped aluminum clusters due to the strong Au−Al interactions.