Published Research - Department of Chemistry


Date of this Version



Published by American Institute of Physics. J. Chem. Physics125, 064705 2006. ©2006 American Institute of Physics. Permission to use.


A treatment of multiscale quasistatic processes that combines an atomistic description of microscopic heterogeneous (“near”) regions of a material with a coarse-grained (quasicontinuum) description of macroscopic homogeneous (“far”) regions is presented. The hybrid description yields a reduced system consisting of the original atoms of the near regions plus pseudoatoms (nodes of the coarse-graining mesh) of the far regions, which interact through an effective many-body potential energy Veff that depends on the thermodynamic state. The approximate nature of Veff gives rise to “ghost forces,” which are reflected in spurious heterogeneities close to interfaces between near and far regions. The impact of ghost forces, which afflict all previous hybrid schemes, is greatly diminished by a self-consistent-field hybrid atomistic-coarse-grained (SCF-HACG) methodology. Tests of the SCF-HACG technique on a fully three-dimensional prototypal model [Lennard-Jones (12,6) crystal] yield thermo-mechanical properties (e.g., local stress) in good agreement with “exact” properties computed in the fully atomistic limit. The SCF-HACG method is also successfully used to characterize the grain boundary in a Lennard-Jones bicrystal.

Included in

Chemistry Commons