Materials and Nanoscience, Nebraska Center for (NCMN)



Imran Ahamed

Date of this Version



AIP Advances 9, 035231 (2019)


© 2019 Author(s).


The magnetocrystalline anisotropy of pristine and Co-substituted ε-Fe2O3 is investigated by density functional calculations. The epsilon-iron oxide is the only polymorph of Fe2O3 magnetoelectric in its antiferromagnetic ground states other crystalline forms being α-Fe2O3 (hematite), β-Fe2O3, and γ-Fe2O3 (maghemite). The magnetizations of the four iron sublattices are antiferromagnetically aligned with slightly different magnetic moments resulting in a ferrimagnetic structure. Compared to the naturally occurring hematite and maghemite, bulk ε-Fe2O3 is difficult to prepare, but ε-Fe2O3 nanomaterials of different geometries and feature sizes have been fabricated. A coercivity of 20 kOe [2 T] was reported in nanocomposites of ε-Fe2O3, and an upper bound for the magnetic anisotropy constant Kat a low temperature of ε-Fe2O3 is previously measured to be 0.1 MJ/m3. In the Co-substituted oxides, one octahedral or tetrahedral Fe atom per unit cell has been replaced by Co. The cobalt substitution substantially enhances magnetization and anisotropy.