Computer Science and Engineering, Department of


Date of this Version



2011 Third IEEE International Conference on Coud Computing Technology and Science; DOI 10.1109/CloudCom.2011.16


U.S. Government Work Not Protected by U.S. Copyright


MapReduce is a powerful platform for large-scale data processing. To achieve good performance, a MapReduce scheduler must avoid unnecessary data transmission by enhancing the data locality (placing tasks on nodes that contain their input data). This paper develops a new MapReduce scheduling technique to enhance map task’s data locality. We have integrated this technique into Hadoop default FIFO scheduler and Hadoop fair scheduler. To evaluate our technique, we compare not only MapReduce scheduling algorithms with and without our technique but also with an existing data locality enhancement technique (i.e., the delay algorithm developed by Facebook). Experimental results show that our technique often leads to the highest data locality rate and the lowest response time for map tasks. Furthermore, unlike the delay algorithm, it does not require an intricate parameter tuning process.