Off-campus UNL users: To download campus access dissertations, please use the following link to log into our proxy server with your NU ID and password. When you are done browsing please remember to return to this page and log out.

Non-UNL users: Please talk to your librarian about requesting this dissertation through interlibrary loan.

Diamond-based multimaterials for thermal management applications

Clio Azina, University of Nebraska - Lincoln

Abstract

Today, the microelectronics industry uses higher functioning frequencies in commercialized components. These frequencies result in higher functioning temperatures and, therefore, limit a component’s integrity and lifetime. Until now, heat-sink materials were composed of metals which exhibit high thermal conductivities (TC). However, these metals often induce large coefficient of thermal expansion (CTE) mismatches between the heat sink and the nonmetallic components of the device. Such differences in CTEs cause thermomechanical stresses at the interfaces and result in component failure after several on/off cycles. To overcome this issue, we suggest replacing the metallic heat sink materials with a heat-spreader (diamond film) deposited on metal matrix composites (MMCs), specifically, carbon-reinforced copper matrices (Cu/C) which exhibit optimized thermomechanical properties. However, proper transfer of properties in MMCs is often compromised by the absence of effective interfaces, especially in nonreactive systems such as Cu/C. Therefore, the creation of a chemical bond is ever more relevant. The goal of this research was to combine the exceptional properties of diamond by means of a thin film and the adaptive thermomechanical properties of MMCs. Carbon-reinforced copper matrix composites were synthesized using an innovative solid-liquid coexistent phase process to achieve designed composition gradients and optimized matrix/reinforcement interface properties. In addition, the lack of chemical affinity between Cu and C results in poor thermal efficiency of the composites. Therefore, alloying elements were inserted into the material to form carbide interphases at the Cu/C interface. Their addition enabled the composite’s integrity to be optimized in order to obtain thermally efficient assemblies. The diamond, in the form of a thin layer, was obtained by laser-assisted chemical vapor deposition. This process allowed action on the film’s phase purity and adhesion to the substrate material. Of particular importance was the influence of the interfaces on thermal properties both within the composite material (matrix-reinforcement interface) and within the diamond film-MMC assembly.

Subject Area

Physical chemistry|Electrical engineering

Recommended Citation

Azina, Clio, "Diamond-based multimaterials for thermal management applications" (2017). ETD collection for University of Nebraska-Lincoln. AAI10681576.
https://digitalcommons.unl.edu/dissertations/AAI10681576

Share

COinS